AZDye 633 Picolyl Azide (CCT-1549)

Thanks for your interest! Unfortunately, the product you are looking for is currently out of stock.

This item typically ships in 2-3 weeks. You can still purchase the product and will receive an order confirmation with a ship date in 1-2 business days.

Description

AZDye™ 633 Picolyl Azide is an advanced fluorescent probe that incorporates a copper-chelating motif to raise the effective concentration of Cu(I) at the reaction site to boost the efficiency of the CuAAC reaction, resulting in a faster and more biocompatible CuAAC labeling. Up to 40-fold increase of signal intensity, compared to conventional azides, was reported (see Selected References).

AZDye™ 633 Azide is a bright and photostable far-red fluorescent probe with excitation ideally suited to the 633 nm or 635 nm laser excitation source. AZDye™ 633 Azide is water-soluble, pH-insensitive from pH 4 to pH 10. AZDye™ 633 spectrally is almost identical to Alexa Fluor® 633, DyLight® 633 or CF® 633 Dye. Combination of superior brightness and very low autofluorescence background signal in most biological samples in far-red spectral region allows for very sensitive detection of alkyne-labeled biomolecules.

Specifications

Unit Size1 mg, 5 mg, 25 mg
Abs/Em Maxima631/651 nm
Extinction Coefficient
100,000
Flow Cytometry Laser Line
633 nm or 647 nm
Microscopy Laser Line
633 nm or 647 nm
Spectrally Similar DyesAlexa Fluor® 633, CF® 633
Molecular weight1200.26
CASN/A
SolubilityWater, DMSO, DMF
AppearanceBlue solid
Storage Conditions-20°C. Desiccate
Shipping ConditionsAmbient temperature

Abs/Em Spectra

Documents

Selected References

  1. Morral, C., et al. (2020). Protocol for Efficient Protein Synthesis Detection by Click Chemistry in Colorectal Cancer Patient-Derived Organoids Grown In Vitro. STAR ProtocolsVolume 1, 2 [ScienceDirect]
  2. Uchiyama, J., et al. (2020). Quantitative nascent proteome profiling by dual pulse labeling with O-propargyl-puromycin and stable isotope labeled amino acids. The Journal of Biochemistry10, 1093. [Oxford Academic]
  3. Jiang, H., et al. (2014). Monitoring Dynamic Glycosylation in Vivo Using Supersensitive Click Chemistry. Bioconjugate Chem.,25, 698-706. [PubMed]
  4. Uttamapinant, C., et al. (2012). Fast, Cell-Compatible Click Chemistry with Copper-Chelating Azides for Biomolecular Labeling. Angew. Chem. Int. Ed,.51, 5852-56. [PubMed]
  5. Gaebler, A.,et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J. Lipid. Res., 57, 1934-47. [PubMed]

How do I Request a Quote?

To request a quote for products:

  1. Click “Contact Us” in the header bar above;
  2. Click “Customer Service”;
  3. Complete the form and provide the following information in the “Comments” section: note you would like a quote, item number (SKU) and quantity;
  4. Click “Submit”.